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A methodology for applying the differential quadrature (DQ) method to the free
vibration analysis of arbitrary quadrilateral plates is developed. In our approach, the
irregular physical domain is transformed into a rectangular domain in the compu-
tational space. The governing equation and the boundary conditions are also trans-
formed into relevant forms in the computational space. Then all the computations
are based on the computational domain. As compared to the approach proposed by
C. W. Bert and M. Malik (Int. J. Mech. Sci.38, 589 (1996)), the present approach
requires much less computational effort and virtual storage. In addition, the present
work uses a simple and convenient way to implement clamped and simply supported
boundary conditions. An exact mapping technique is used to perform the coordinate
transformation in this study. Some numerical examples are provided to show the
computational efficiency of the present scheme.c© 2000 Academic Press

Key Words:differential quadrature method; vibration analysis; arbitrary quadrilat-
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INTRODUCTION

In recent years, the differential quadrature (DQ) method has become increasingly popular
in the numerical solution of initial and boundary value problems [1]. The advantages of the
DQ method lie in its easy use and flexibility with regard to arbitrary grid spacing. Compared
to the conventional low-order numerical techniques such as the finite element and finite
difference methods, the DQ method can yield accurate solutions with relatively much fewer
grid points. On the other hand, it is well known that the strength of the finite element
method is its ability to handle irregular geometry with curved boundaries. In previous
applications, the DQ method was limited to distributed parameter systems or problems
with regular domains. Recent studies have extended the application of the DQ method in
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solving relatively complex problems. Shu [2] presented a DQ multidomain approach to
fluid mechanics problems with irregular domains. Lam [3] introduced a mapping technique
to apply the DQ method to conduction, torsion, and heat flow problems with arbitrary
geometries. These applications involved the second-order differential systems. Strizet al.
[4] and Wang and Gu [5] developed two different schemes for a DQ element to analyze
some realistic structural problems with discontinuous loads or geometry. Bert and Malik
[6] made the first attempt to apply the DQ method to the vibration analysis of irregular
plates. Liew and Han [7, 8] also used a similar approach to analyze irregular quadrilateral
thick plates. All these efforts show that the element and mapping techniques can extend the
DQ method to general geometry problems while retaining its attractive features of rapid
convergence and high accuracy.

The contribution of Bert and Malik [6] is that they were the first to handle curvilinear
geometries involving structural mechanics problems in fourth-order differential systems.
The difficulties of the high-order systems lie in the complexity of the governing and boundary
equations. In Bert and Malik’s approach, the matrices of the first-order derivatives in thex
andy directions are first formed by the DQ method. Then by using the differential chain
rule and matrix multiplication techniques, the matrices for the discretization of the higher-
order derivatives are obtained. It is noted that the idea of Bert and Malik’s approach is very
simple. However, the computational effort and virtual storage required by Bert and Malik’s
approach are very large. Actually, the dimension of the matrix by matrix multiplication
in Bert and Malik’s approach is (Nx Ny)× (Nx Ny), which is much larger than (Nx × Nx)
used in the regular domain. Here,Nx and Ny represent the numbers of grid points along
the x and y directions. Therefore, the computational effort for a matrix multiplication is
proportional to the order of (Nx Ny)

4 scalar multiplications. In contrast, the traditional DQ
application to two-dimensional problems with regular domains only involves on the order of
(Nx Ny)

2 scalar multiplications. Therefore, Bert and Malik’s approach requires much larger
computational effort in comparison to the application of DQ to regular domain problems,
especially for a large number of grid points.

The boundary condition equations used by Bert and Malik [6] involve the angle between
the normal to the plate boundary and thex axis. When applied to problems with complex
curvilinear boundaries, this may increase the programming and computing effort by having
to obtain the value of the angle at each boundary point. Another problem in Bert and Malik’s
approach is that cubic serendipity shape functions are used to map plate configurations hav-
ing curvilinear edges. As pointed out by Campion and Jarvis [9], geometric mapping is more
demanding for a large element, which is often employed in high-order or global numerical
techniques such as the DQ method. In some cases, the cubic serendipity shape functions
are sufficiently accurate for mapping the irregular domain into a square region. However,
for complex geometries, it is necessary to employ more accurate mapping techniques [10].

This paper focuses on the DQ vibration analysis of irregular plates. Some innovations
are presented to cure the above-mentioned deficiencies in Bert and Malik’s approach. First,
we derive the governing and boundary condition equations of a vibrating plate in the curvi-
linear coordinate system (computational space). By using these equations, the conventional
differential quadrature rule on the rectangular domain can be directly extended to handle
the complex geometry problems. Therefore, only the original DQ weighting coefficients in
each direction are involved, and the procedure of the reformation of the quadrature rules
in Bert and Malik [6] is no longer needed. Second, an approach is presented to implement
the boundary conditions, which does not involve the angle between the normal to the plate
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boundary and thex axis. The implementation of this approach is very simple, especially
for the simply supported condition. Third, following the approach proposed by Shu and Du
[11, 12], two boundary conditions at each boundary are exactly satisfied in the present study
while, in contrast, only one boundary condition is exactly satisfied at theδ-technique imple-
mented by Bert and Malik [6]. Therefore, the drawbacks of theδ-technique are eliminated.
Another improvement in the present work is to employ exact mapping for the coordinate
transformation. Exact geometric mapping circumvents the effects of the inaccuracies of the
mapping on the DQ solutions. Finally, some numerical examples are provided to demon-
strate the computational efficiency of the present approach.

2. DIFFERENTIAL QUADRATURE METHOD

One of the key issues in the DQ method is how to determine its weighting coefficients.
The earlier approach, which required solving algebraic equations with an ill-conditioned
Vandermonde matrix, is neither efficient nor accurate when the number of grid points is large
[13]. By using the analysis of a high-order polynomial approximation and of a linear vector
space, Shu and Richards [13] presented a simple algebraic formulation or a recurrence
relationship to compute the weighting coefficients of the DQ method. For thenth-order
derivative of a functionf (x, t) with respect tox at a grid pointxi , the DQ approximation
can be expressed as

f (n)x (xi , t) =
N∑

k=1

c(n)ik · f (xk, t), n = 1, 2, . . . , N − 1, i = 1, 2 . . . , N, (1)

whereN is the number of grid points in the whole domain andc(n)ik are the weighting coef-
ficients to be determined by the DQ method. As shown in the work of Shu and Richards [2]
and Shu and co-workers [11–14], the weighting coefficients of the first-order derivative can
be calculated by a simple algebraic formulation without any restriction on the choice of grid
point distribution, and the weighting coefficients of the second- and higher-order deriva-
tives can be computed from a recurrence relationship. For details of these computations,
the reader is advised to refer to Refs. [2, 11–14].

3. COORDINATE TRANSFORMATION FROM PHYSICAL SPACE

TO COMPUTATIONAL SPACE

Like low-order finite difference schemes, the DQ method requires the computational
domain to be rectangular. For irregular domains, the DQ method cannot be applied directly.
To apply the DQ method to such problems, a coordinate transformation is necessary; that
is, the irregular physical domain is transformed into a regular computational domain. An
example of coordinate transformation is shown in Fig. 1. The coordinate transformation
can be made using the expression

x = x(ξ, η) (2a)

y = y(ξ, η). (2b)

It is noted that Eq. (2) gives a one-to-one mapping from the physical space (x, y) to the
computational space (ξ ,η) or from the computational space (ξ ,η) to the physical space (x, y).
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FIG. 1. Physical and computational domains.

In the work of Bert and Malik [6],x(ξ, η) andy(ξ, η) are taken as the isoparametric shape
functions used in the finite element analysis. However, since the computational domain of
the DQ method is much larger than that of finite elements, this kind of transformation may
cause significant errors when the domain is large and any of the boundaries has a high
curvature. To improve this, accurate transformation expressions are needed. The blending
function method is such a scheme, which was originated in a computer-aided design [15]
and used by Malik and Bert [20] in the DQ application. In this study, we will introduce this
technique for coordinate transformation.

Several kinds of blending functions are available. Defining the vectorV(ξ, η) as

V(ξ, η) =
[
x(ξ, η)

y(ξ, η)

]
,

the linear blending function gives [15]

V(ξ, η) =
(

1− ξ
2

)
M(−1, η)+

(
1+ ξ

2

)
M(1, η)+

(
1− η

2

)
M(ξ, 1)

+
(

1+ η
2

)
M(ξ, 1)− (1− ξ)(1− η)

4
M(−1,−1)− (1− ξ)(1+ η)

4
M(−1, 1)

− (1+ ξ)(1− η)
4

M(1,−1)− (1+ ξ)(1+ η)
4

M(1, 1), (3)

where the functionsM(ξi , η) andM(ξ, η j ) represent the four boundary parametric curves
of the original physical domain and the functionM(ξi , η j ) denotes thex andy coordinates
of the point corresponding to the coordinates(ξi , η j ) in the computational space.

For the geometry shown in Fig. 2, Eq. (3) gives

x(ξ, η) = [rd + (a− rd)(η + 1)/2] cos(ϕ(ξ + 1)/2), (4a)

y(ξ, η) = [rd + (a− rd)(η + 1)/2] sin(ϕ(ξ + 1)/2), (4b)

where

rd = sin(π − α − ϕξ/2)
sin(ϕξ/2)

b,

α = −arcsin

[
e

b
sin(ϕξ/2)

]
,
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FIG. 2. An eccentric sectorial plate.

ϕ is the angle of the sectorial plate,a is the radius of the outer surface,b is the radius of
the inner surface, ande is the distance between two centers of eccentric surfaces. For the
geometry shown in Fig. 3, Eq. (3) is simplified to

x(ξ, η) = a(ξ + 1)/2, (5a)

y(ξ, η) = −
√

b2− (b2− c2)(ξ + 1)/2+ 2η
√

b2− (b2− c2)(ξ + 1)/2. (5b)

Similarly, using Eq. (3), we have

x(ξ, η) = 0.75(1+ η)+ 0.25(1+ η) cos

(
π

8
− π

8
ξ

)
, (6a)

y(ξ, η) = 0.375(1− ξ)(1+ η)+ 0.25(1− η) sin

(
π

8
− π

8
ξ

)
(6b)

FIG. 3. A symmetric, parabolic, trapezoidal plate.
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FIG. 4. A section of a right triangular plate with a corner cutout.

for the geometry shown in Fig. 4 and

x(ξ, η) = (0.6255η + 2.6255) cos((ξ + 1)π/4), (7a)

y(ξ, η) = (0.87551η + 1.8755) sin((ξ + 1)π/4) (7b)

for the geometry shown in Fig. 5. It is indicated that Bert and Malik [6], using a cubic shape
function, have also considered the geometries shown in Figs. 2 and 3. All of the above
geometries will be used as test examples for the present study.

4. PLATE VIBRATION EQUATIONS IN THE CURVILINEAR COORDINATE SYSTEM

In this section, we will show the plate vibration equations in the curvilinear coordinate
system so that the traditional DQ rules for regular domains [11] can be directly extended to
the plate vibration problems with arbitrary quadrilateral domains. The equation governing

FIG. 5. A quarter section of an elliptical plate.
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the free vibration of plates can be expressed as

wxxxx+ 2wxxyy+ wyyyy= Ä2w, (8)

whereÄ = ωa2√ρh/D, D is the plate stiffness,h is the total plate thickness,ρ is the
density,w is the deflection, andω is the natural frequency of free vibration. The govern-
ing equation (8) can be transformed in the (ξ, η) system (computational space) into the
form

D̄(41)w,ξξξξ + D̄(42)w,ξξξη + D̄(43)w,ξξηη + D̄(44)w,ξηηη + D̄(45)w,ηηηη + D̄(31)w,ξξξ

+ D̄(32)w,ξξη + D̄(33)w,ξηη + D̄(34)w,ηηη + D̄(21)w,ξξ + D̄(22)w,ξη

+ D̄(23)w,ηη + D̄(11)w,ξ + D̄(12)w,η = Ä2w, (9)

where

D̄(41) = a2,

D̄(42) = 2ab,

D̄(43) = 2ac+ b2,

D̄(44) = 2cb,

D̄(45) = c2,

D̄(31) = 2da+ 2aaξ + baη,

D̄(32) = 2bd+ 2ae+ 2abξ + 2caη + baξ + bbη,

D̄(33) = 2dc+ 2acξ + 2be+ 2cbη + bbξ + bcη,

D̄(34) = 2ec+ 2ccη + bcξ ,

D̄(21) = d2+ 2adξ + daξ + eaη + aaξξ + baξη + caηη + bdη,

D̄(22) = 2de+ 2aeξ + 2cdη + dbξ + bdξ + ebη + beη + abξξ + bbξη + cbηη,

D̄(23) = e2+ 2ceη + dcξ + ecη + acξξ + bcξη + ccηη + beξ ,

D̄(11) = ddξ + edη + adξξ + bdξη + cdηη,

D̄(12) = deξ + eeη + aeξξ + beξη + ceηη,

a = A

J
, b = 2B

J
, c = C

J
, d = (Aξ + Bη)

J
, e= (Bξ + Cη)

J
,

A = α

J
, B = −β

J
, C = γ

J
,

α = x2
η + y2

η, β = xξ xη + yξ yη, γ = x2
ξ + y2

ξ , J = xξ yη − xηyξ .

The variable domain of Eq. (9) is a rectangle as shown in Fig. 1. It is noted that Eq. (9)
with varying coefficientsD̄(i j ) is much more complicated in form than Eq. (8). How-
ever, it should be indicated that, since the computational domain is regular, Eq. (9) can
be solved in exactly the same way as regular domain problems by using the DQ
method.
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Simply supported (SS) and clamped (C) boundary conditions will be considered in the
present study. They are given as follows:

Clamped (C)

w = 0, (10a)

∂w

∂n
= 0. (10b)

Simply Supported (SS)

w = 0, (11a)

∂2w

∂n2
+ ν ∂

2w

∂τ 2
= 0, (11b)

wheren andτ denote the normal and tangential directions, respectively. Equations (10a)
and (11a) represent zero deflection, Eq. (10b) represents zero normal rotation, and Eq. (11b)
represents zero normal moment. The zero deflection condition can be easily implemented.
In the work of Bert and Malik [6], the zero normal rotation and moment conditions in the
clamped and simply supported edges are expressed as

w,x cosθ + w,y sinθ = 0, (12)

(cos2 θ + ν sin2 θ)w,xx+ (sin2 θ + ν cos2 θ)w,yy+ 2(1− ν) cosθ sinθw,xy = 0, (13)

whereθ is the angle between the normal to the plate boundary and thex-axis. It is noted
that Eq. (12) is equivalent to Eq. (10b), while Eq. (13) is equivalent to Eq. (11b). In the
following, we will show how to simplify Eqs. (12) and (13) along theξ = constant and
η = constant boundaries in the curvilinear coordinate system.

For the clamped and simply supported edges, the deflectionw is always zero. Thus, we
have

∂w

∂η
= 0 (14a)

∂2w

∂η2
= 0 (14b)

on theξ = constant boundaries, and

∂w

∂ξ
= 0 (15a)

∂2w

∂ξ2
= 0 (15b)

on theη = constant boundaries. On the other hand, we note thatθ is the angle between the
normal to the plate boundary and thex axis. So, along theξ = constant boundaries, we
have

cosθ = yη/
√
α (16a)

sinθ = −xη/
√
α. (16b)
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Using Eqs. (14) and (16), the zero normal rotation condition (12) along theξ = constant
boundaries can be simplified to

∂w

∂ξ
= 0 (17)

and the zero normal moment condition (13) along theξ = constant boundaries can be
reduced to

∂2w

∂ξ2
− 2β

α

∂2w

∂ξ∂η
+ s

∂w

∂ξ
= 0, (18)

where

s = 1

Jα2
[(α2yξξ − 2αβyξη + β2yηη)xη − (α2xξξ − 2αβxξη + β2xηη)yη]

+ ν J

α2
(yηηxη − xηηyη).

Similarly, along theη = constant boundaries, cosθ and sinθ can be expressed as

cosθ = yξ /
√
γ (19a)

sinθ = −xξ /
√
γ . (19b)

Therefore, Eq. (12) is reduced to

∂w

∂η
= 0 (20)

and Eq. (13) is simplified to

∂2w

∂η2
− 2β

γ

∂2w

∂ξ∂η
+ t

∂w

∂η
= 0, (21)

where

t = 1

Jγ 2
[(β2xξξ − 2γβxξη + γ 2xηη)yξ − (β2yξξ − 2γβyξη + γ 2yηη)xξ ]

+ ν J

γ 2
(xηηyξ − yηηxξ ).

5. APPLICATIONS AND DISCUSSIONS

In this section, the DQ method is used to solve Eq. (9) governing the transverse vibration
of irregular plates. The independent variablesξ andη in the square computational domain
as shown in Fig. 1 range from−1 to 1. Application of the DQ method to Eq. (9) gives

D̄(41)
i j Dξ

ikwk j + D̄(42)
i j Cξ

ik Aηjmwkm+ D̄(43)
i j Bξik Bηjmwkm+ D̄(44)

i j AξikCη
jmwkm+ D̄(45)

i j Dη
jmwim

+ D̄(31)
i j Cξ

ikwk j + D̄(32)
i j Bξik Aηjmwkm+ D̄(33)

i j Aξik Bηjmwkm+ D̄(34)
i j Cη

jmwim + D̄(21)
i j Bξikwk j

+ D̄(22)
i j Aξik Aηjmwkm+ D̄(23)

i j Bηjmwim + D̄(11)
i j Aξikwk j + D̄(12)

i j Aηjmwim = Ä2wi, j (22)
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for i , j = 3, . . . , (N − 2), whereAi j , Bi j , Ci j , andDi j with superscriptsξ andη denote
the weighting coefficient matrices of the first-, second-, third-, and fourth-order derivatives
along theξ andη directions, andN and M are the numbers of grid points along theξ
andη directions, respectively. The repeated indexk means summation from 1 toN along
theξ direction, while the repeated indexm indicates summation from 1 toM along theη
direction. It is noted that all the DQ weighting coefficient matrices in Eq. (22) are obtained
in the same way as the application of the DQ method to regular domain problems. It is noted
that Eq. (22) only involves the order ofN2M2 scalar multiplications.

Because vibration plate problems are actually high-order boundary value problems with
double boundary conditions at each edge, some careful consideration is needed to properly
implement the boundary conditions [11, 12]. To our knowledge, at least four kinds of
approaches are available to implement such multiple boundary conditions. The earliest is
the so-calledδ-technique proposed by Bertet al. [16] and widely used in the literature.
The approach enforces the geometric boundary conditions at the actual boundary points
and the derivative boundary conditions at theδ points, which are a very small distance
δ (δ=∼ 10−5 in dimensionless values [6]) away from the respective boundary. Thus, one
boundary condition cannot be satisfied exactly at the boundary points and the accuracy of
the solutions is affected. As mentioned earlier, arbitrariness in the choice of theδ value may
introduce unexpected oscillations into the solution behavior. To overcome the drawbacks
of the δ approach, Wang and Bert [18] developed a new technique which incorporates
the boundary conditions into the DQ weighting coefficient matrices in advance, and then
the weighting coefficients with built-in boundary conditions are employed to discretize the
governing equations for the problems of interests. The essence of the approach is that
the boundary conditions are applied during the formulation of the weighting coefficient
matrices for the inner grid points. The technique improves the accuracy of the DQ solution
for problems with simply supported conditions. However, the technique is limited to simple
problems due to its inability to handle problems with discontinuous geometry and loading
as well as cross derivative boundary conditions. Chenet al. [21] presented an efficient
approach to treat the fourth-order boundary conditions. More recently, Wang and Gu [5]
presented a so-called differential quadrature element method (DQEM). The DQEM shows
flexibility in a variety of beam and beam structure problems with discontinuous geometry
and loading. However, it also seems to have difficulty in covering problems with mixed
partial derivative boundary conditions. An intuitive methodology is to directly implement
the double boundary conditions exactly at the edge points. Shu and Du [11, 12] showed
a systematic use of the methodology in the solution of vibration problems for beams and
plates with various boundary conditions, including the first application to plates with free
corners. The approach of Shu and Du is conceptually simple and effective for all types
of boundary conditions. The idea of this approach is to replace the discretized governing
equation by the discretized boundary condition equation for some interior points.

According to the above discussion, one can easily conclude that only the conventionalδ-
technique and Shu and Du’s approach are capable of solving problems with cross derivative
boundary conditions encountered in irregular geometry problems. It is well demonstrated
in [11, 12] that the accuracy, simplicity, efficiency, and stability of Shu and Du’s approach
are consistently superior to those of theδ-technique. Therefore, in this study we adopt Shu
and Du’s approach to implement double boundary conditions at each edge.

In the present study, the mesh point distribution used in the work of Shu and Richards
[13] is adopted to generate the mesh points in the computational space. The algorithm is
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FIG. 6. A rhombic plate.

carried out in FORTRAN 77 and is run on a HP C200 workstation using double precision
arithmetic. The performance of the present method is demonstrated through the vibration
solution of plates with irregular geometry as shown in Figs. 2–6. Table I displays the first
six frequencies of the flexural vibration of eccentric sectorial plates. The DQ results are
obtained using a mesh size of 21× 21 for three cases of the SS–SS–SS–SS, SS–C–SS–C,
and C–C–C–C configurations. It can be seen from the table that the present DQ results
agree very well with those given by Bert and Malik [6]. It should be pointed out that the
differences between the present solutions and those in Bert and Malik [6] are due to the
use of different approaches for coordinate transformation and implementation of multiple
boundary conditions. Figure 7 shows the ratio of CPU time (present/reference [6]) versusN
(the number of grid points in thex direction) for the vibration analysis of eccentric sectorial
plates. It is noted that the CPU time of Ref. [6] is also obtained on a HP C200. We edited
a program using the approach proposed in Ref. [6] and ran it on a HP C200. In this study,
the numbers of grid points used in thex and y directions are taken to be the same. It is
apparent that for the same number of grid points, solution by the present method requires
much less CPU time than solution by Bert and Malik’s approach. It should be pointed out
that the computational effort in the solution of the resulting eigenvalue equation system

TABLE I

Converged Solutions of the First Six Frequencies of Flexural Vibration of Eccentric Sectorial

Plates (Fig. 2:a/b = 8/3, e/b = 1.0,ϕ = 45◦, Ω = ωa2/π2
√
ρh/D)

Mode

N = M 1 2 3 4 5 6

SS–SS–SS–SS
21 17.717 23.168 33.744 48.564 62.542 65.863
[6] 17.592 23.130 33.729 48.575 62.414 65.878

SS–C–SS–C
21 35.361 37.727 45.998 58.537 75.918 93.540
[6] 35.352 37.794 46.010 58.560 75.941 93.721

C–C–C–C
21 36.405 40.417 50.487 65.448 85.239 95.720
[6] 36.360 40.452 50.498 65.463 85.254 95.782
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FIG. 7. Ratio of CPU time (present/reference [6]) versusN (=M) for vibration analysis of eccentric sectorial
plates.

is the same in the present approach and Bert and Malik’s approach. The computational
efficiency of the present approach comes from the fact that it does not involve on the
order ofN4M4 scalar multiplications to obtain the discretization matrices for higher-order
derivatives. It was found from Fig. 7 that the solution of the resultant eigenvalue equation
system dominates the CPU time in the present approach, while, in contrast, the operation
of matrix multiplication accounts for most of the CPU time in Bert and Malik’s approach.
On the other hand, by comparing solutions for plates with different boundary conditions,
it is seen that CPU time does not change much when the same number of grid points is
used.

The results of the first six frequencies of flexural vibration of symmetric parabolic trape-
zoidal plates with C–C–C–C, SS–C–SS–C, and C–SS–C–SS boundaries are presented in
Table II. It is noted that there is a small difference between the present solutions and those
in Bert and Malik [6] due to the different implementation of the coordinate transformation

TABLE II

Converged Solutions of the First Six Frequencies of Flexural Vibration of Symmetric

Parabolic Trapezoidal Plates (Fig. 3:a/b = 3.0, b/c = 2.5; Ω = ωa2/π2
√
ρh/D)

Mode

N = M 1 2 3 4 5 6

C–C–C–C
17 9.3723 13.9641 19.7460 21.8375 27.2672 29.1650
[6] 9.3645 13.977 19.799 21.843 27.334 29.139

PV-2 Ritza 9.3428 14.1186 20.0527 21.6208 27.6616 29.2138

SS–C–SS–C
17 8.5709 12.8800 18.0984 20.7258 24.6152 27.7824
[6] 8.5694 12.886 18.154 20.746 24.691 27.757

C–SS–C–SS
19 5.4742 9.9289 15.4196 16.1466 21.930 24.2740
[6] 5.4831 9.9535 15.424 16.178 21.942 24.306

a The solutions of the PV-2 Ritz method were provided by Mr. Yang Lei of the Civil Engineering Department
of National University of Singapore.
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TABLE III

Converged Solutions of the First Six Frequencies of Flexural Vibration of a Right Triangular

Plate with a Corner Cutout (Fig. 4: Ω = ωa2
√
ρh/D)

Mode

N = M 1 2 3 4 5 6

SS–SS–SS–SS
21 1.226 2.655 3.259 4.462 5.655 6.119

SS–C–SS–C
19 1.526 3.068 3.707 4.978 6.243 6.696

C–C–C–C
19 2.362 4.198 4.928 6.416 7.771 8.308

and the boundary conditions. Solutions of a C–C–C–C plate using the PV-2 Ritz method
are also included in Table II. It is observed that the DQ solutions agree very well with
those yielded by the PV-2 Ritz method. It should be indicated that in the case of symmetric
parabolic trapezoidal plates with all edges simply supported, the present approach has faster
convergence speed using unequal numbers of grid points than using equal numbers of grid
points along theξ andη directions. This coincides with Bert and Malik’s approach. For the
sake of brevity, we do not display the relative solutions here.

The vibration of irregular plates as shown in Figs. 4 and 5 was also investigated. To the
authors’ knowledge, such plate configurations have never been analyzed before. Therefore,
these results are provided as benchmarks for future research. Both the present and Bert and
Malik’s approaches are applied to solve these problems. It was found that the two results
were almost the same. Table III summarizes the first six frequencies of flexural vibration of
a right triangular plate with a corner cutout. Since the results of Bert and Malik’s approach
are almost the same as those of present approach, only the present results are shown in
Table III. In Table IV, the DQ solutions of the first six frequencies of flexural vibration of an
elliptical sectorial plate are given. It is noteworthy that the present DQ solutions obtained
with a mesh size of 11× 11 are very accurate. This may be due to less mapping distortion
being present. It is true for all the cases that grid distortion caused by geometric mapping
impairs the accuracy of the DQ method compared with that of DQ solutions of regular
domain problems.

TABLE IV

Converged Solutions of the First Six Frequencies of Flexural Vibration of Quarter Sections

of Elliptical Plates (Fig. 5: Ω = ωa2
√
ρh/D)

Mode

N = M 1 2 3 4 5 6

SS–SS–SS–SS
11 0.491 0.773 1.183 1.624 1.699 1.997

C–SS–C–SS
11 0.536 0.879 1.358 1.675 1.943 2.178

C–C–C–C
11 0.974 1.292 1.715 2.245 2.444 2.980
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TABLE V

Converged Solutions of the First 10 Frequencies of Flexural Vibration of Clamped

Rhombic Plate (Fig. 6:Ω = ωa2
√
ρh/D)

Mode

N = M 1 2 3 4 5 6 7 8 9 10

17 12.703 23.369 28.254 34.738 45.948 48.969 49.794 61.130 65.361 74.533
[6] 12.703 23.369 — 34.738 45.948 48.969 49.794 61.130 65.362 74.535

[19] 12.70 23.37 28.25 34.74 45.95 48.98 49.79 61.13 — 74.54

Finally, Table V lists the first 10 frequencies of clamped rhombic plates when the ratio of
the major and minor diagonal lengths (b/a) is 1.5 : 1. The geometry of these plates is shown
in Fig. 6. For this case, Bert and Malik [6] could not converge on the third frequency. This
may be due to the fact that one of the double boundary conditions at each edge is imposed at
the so-calledδ point in their approach, which is not exactly on the boundary. It is claimed [6]
that Gorman [19] gave the most accurate solutions of this case by using the superposition
method. The present DQ solutions agree very well with those given by Gorman [19]. It
is also interesting to note that Gorman [19] did not provide the ninth frequency for this
problem.

6. CONCLUSIONS

This paper presents a new approach to the study of the vibration of irregular plates with
simply supported and clamped boundary conditions. In this approach, the irregular physical
domain is transformed into a regular domain (square) in a curvilinear coordinate system
(computational space) and, accordingly, the governing equation and boundary conditions are
transformed into relevant forms in the curvilinear coordinate system. Then all computations
are based on the computational domain. Since the computational domain is regular, the
application of the DQ method to irregular plates in the computational space is exactly the
same as the application of the DQ method to regular plates in the physical domain. The
only difference is that more terms are involved in the governing equation and the boundary
conditions in the curvilinear coordinate system. The present approach avoids the huge
operation of matrix multiplication, which is involved in Bert and Malik’s approach [6], and,
as a result, computational effort and virtual storage are greatly reduced. It is demonstrated
through test examples that the present approach requires less than one-tenth of the CPU
time that Bert and Malik’s approach requires when the number of grid points is the same. In
addition, the present paper introduces a simple way to implement the simply supported and
clamped boundary conditions, which avoids the difficulty of determining the angle between
the direction normal to the boundary and thex axis used in Bert and Malik’s approach.
An exact coordinate transformation is used in the present work, and the two boundary
conditions at each edge are satisfied accurately at the boundary points. It is demonstrated
by test examples that, although the present approach requires less CPU time than Bert and
Malik’s approach, it shows slight improvement in the accuracy of the numerical results as
compared to Bert and Malik’s approach. This improvement is probably due to the use of an
exact coordinate transformation in the present work and to the different implementation of
the boundary conditions between the two approaches. Through the present study, it can be
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concluded that the present approach combines the attractive features of rapid convergence
and high accuracy of the DQ solution of regular domain problems with general geometric
flexibility. This work makes the DQ method more promising for further development into
an efficient and flexible numerical technique for solving practical engineering problems.
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